总结基于大素数分解和离散对数的公钥密码体系数学基础
一、重要概念
群、环、域及相关定理。
1.1 群
非空集合G,以及在G上的二元运算 ∘ \circ ∘,满足三个条件
- 遵循结合律
- 存在单位元
- 存在逆元
那么G和二元运算 ∘ \circ ∘构成了一个群,记为(G, ∘ \circ ∘)
Abel群(交换群)
满足交换律的群
阶的定义,群的阶和元素的阶
同态映射、满同态、单一同态、同构映射
对应集合中的映射、满射、单射和一一映射。
循环群
群G的每一个元素都是由某一固定元素a的幂,记为G=(a),a为G的生成元。
(
Z
Z
Z,
+
+
+)、(
Z
p
∗
,
×
Z_p^*, \times
Zp∗,×)
循环群只有两类:和整数加群同构或者和模n的剩余类加群同构。
子群
G的非空子集H,对于G的运算构成群,则H为G的一个子群,记为
H
≤
G
H \leq G
H≤G.
平凡子群和非平凡子群
特殊子群G和{e}成为平凡子群,其余成为非平凡子群。
循环群的子群仍为循环群。
左陪集和右陪集
子集H左乘G中任意元素,构成一个左陪集;右陪集同理。
不变子群(正规子群)
G的子群H满足左陪集始终等于右陪集,则H为不变子群。
商群
群G的不变子群H的陪集组成的群,记为
G
/
H
G/H
G/H
椭圆曲线及其性质
1.2 环
( R , + , ∗ ) (R,+,*) (R,+,∗):R是非空集合, ( + ) (+) (+)和 ( ∗ ) (*) (∗)为其上两个运算,满足
- ( R , + ) (R,+) (R,+)构成交换群
- R上运算 ( ∗ ) (*) (∗)满足结合律
- ( ∗ ) (*) (∗)对 ( + ) (+) (+)满足左右分配率
在群的基础上加了乘法运算。
零因子
a
=
̸
0
,
b
=
̸
0
,
a
b
=
0
a =\not 0, b =\not 0, ab = 0
a≠0,b≠0,ab=0,a为b的左零因子,b为a的右零因子。
环的特征
无零因子环R的非零元相同的阶
交换环
a
,
b
∈
R
⇒
a
b
=
b
a
a,b\in R\Rightarrow ab=ba
a,b∈R⇒ab=ba
整环
有单位元且无零因子的交换环。
1.3 域
一个至少含有两个元素的环R,满足一下三个条件:
- 是交换环
- 有一个单位元
- 每一个不等于零的元有一个逆元
有限域
顾名思义,只含有有限个元素的域就叫有限域。
二、相关定理
-
循环群 G = ( a ) G=(a) G=(a)的阶有限时,和模n的剩余类加群同构;阶无限时,和整数加群同构。
-
循环群的子群仍为循环群。
-
左陪集要么相等,要么没有交集。
-
G关于子群H的左陪集和右陪集个数一定相等。
-
Lagrange定理
若H是一个有限群G的子群,则 [ G : 1 ] = [ G : H ] [ H : 1 ] . → [ H : 1 ] = ∣ H ∣ [G:1] = [G:H][H:1]. \rightarrow [H:1] = |H| [G:1]=[G:H][H:1].→[H:1]=∣H∣ -
有限群G的任意一个元a的阶n都整除G的阶。
及其推论 Euler定理(m的简化剩余系构成 ϕ ( m ) \phi(m) ϕ(m)阶群,所以任意元素a的阶整除 ϕ ( m ) \phi(m) ϕ(m),结合元素阶的定义即可得Euler定理)。
- H是群G的不变子群,则(G/H, ∘ \circ ∘)构成一个群。 a H ∘ b H = ( a b ) H aH\circ bH = (ab)H aH∘bH=(ab)H G / H = { a H ∣ a ∈ G } G/H = \lbrace aH|a\in G\rbrace G/H={aH∣a∈G}
- 椭圆曲线上的有理点集合G关于加法运算构成交换群。
参考文献
《公钥密码学的数学基础》王小云、王明强、孟宪萌,科学出版社